Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
JID Innov ; 3(6): 100217, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034848

RESUMO

Several observational studies have demonstrated a consistent pattern of decreased melanoma risk among patients with vitiligo. More recently, this finding has been supported by a suggested genetic relationship between the two entities, with certain variants significantly associated with an increased risk of melanoma, basal cell carcinoma, and squamous cell carcinoma but a decreased risk of vitiligo. We compared 48 associated variants from a recently published GWAS and identified three variants-located in the TYR, MC1R-DEF8, and RALY-EIF2S2-ASIP-AHCY-ITCH loci- that correlated with an increased risk for melanoma, basal cell carcinoma, and squamous cell carcinoma and a decreased risk for vitiligo. We then used results of skin cancers and vitiligo GWAS to compare the shared genetic properties between these two traits through an unbiased Mendelian randomization analysis. Our results suggest that the inverse genetic relationship between common skin cancers and vitiligo is broader than previously reported owing to the influence of shared genome-wide significant associations.

2.
Nat Genet ; 55(12): 2255-2268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036787

RESUMO

The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues. To mitigate technical confounding, we developed scHLApers, a pipeline to accurately quantify single-cell HLA expression using personalized reference genomes. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B and T cells. For example, a T cell HLA-DQA1 eQTL ( rs3104371 ) is strongest in cytotoxic cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.


Assuntos
Regulação da Expressão Gênica , Locos de Características Quantitativas , Humanos , Regulação da Expressão Gênica/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
3.
iScience ; 26(10): 108053, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37841595

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) are two etiologically related yet distinctive subtypes of the inflammatory bowel diseases (IBD). Differentiating CD from UC can be challenging using conventional clinical approaches in a subset of patients. We designed and evaluated a novel molecular-based prediction model aggregating genetics, serum biomarkers, and tobacco smoking information to assist the diagnosis of CD and UC in over 30,000 samples. A joint model combining genetics, serum biomarkers and smoking explains 46% (42-50%, 95% CI) of phenotypic variation. Despite modest overlaps with serum biomarkers, genetics makes unique contributions to distinguishing IBD subtypes. Smoking status only explains 1% (0-6%, 95% CI) of the phenotypic variance suggesting it may not be an effective biomarker. This study reveals that molecular-based models combining genetics, serum biomarkers, and smoking information could complement current diagnostic strategies and help classify patients based on biologic state rather than imperfect clinical parameters.

4.
Sci Transl Med ; 15(719): eadg5252, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878672

RESUMO

Effective tissue repair requires coordinated intercellular communication to sense damage, remodel the tissue, and restore function. Here, we dissected the healing response in the intestinal mucosa by mapping intercellular communication at single-cell resolution and integrating with spatial transcriptomics. We demonstrated that a risk variant for Crohn's disease, hepatocyte growth factor activator (HGFAC) Arg509His (R509H), disrupted a damage-sensing pathway connecting the coagulation cascade to growth factors that drive the differentiation of wound-associated epithelial (WAE) cells and production of a localized retinoic acid (RA) gradient to promote fibroblast-mediated tissue remodeling. Specifically, we showed that HGFAC R509H was activated by thrombin protease activity but exhibited impaired proteolytic activation of the growth factor macrophage-stimulating protein (MSP). In Hgfac R509H mice, reduced MSP activation in response to wounding of the colon resulted in impaired WAE cell induction and delayed healing. Through integration of single-cell transcriptomics and spatial transcriptomics, we demonstrated that WAE cells generated RA in a spatially restricted region of the wound site and that mucosal fibroblasts responded to this signal by producing extracellular matrix and growth factors. We further dissected this WAE cell-fibroblast signaling circuit in vitro using a genetically tractable organoid coculture model. Collectively, these studies exploited a genetic perturbation associated with human disease to disrupt a fundamental biological process and then reconstructed a spatially resolved mechanistic model of tissue healing.


Assuntos
Doença de Crohn , Camundongos , Humanos , Animais , Doença de Crohn/genética , Doença de Crohn/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Diferenciação Celular
5.
Gastroenterology ; 165(4): 861-873, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453564

RESUMO

BACKGROUND & AIMS: Small intestinal neuroendocrine tumor (SI-NET) is a rare disease, but its incidence has increased over the past 4 decades. Understanding the genetic risk factors underlying SI-NETs can help in disease prevention and may provide clinically beneficial markers for diagnosis. Here the results of the largest genome-wide association study of SI-NETs performed to date with 405 cases and 614,666 controls are reported. METHODS: Samples from 307 patients with SI-NETs and 287,137 controls in the FinnGen study were used for the identification of SI-NET risk-associated genetic variants. The results were also meta-analyzed with summary statistics from the UK Biobank (n = 98 patients with SI-NET and n = 327,529 controls). RESULTS: We identified 6 genome-wide significant (P < 5 × 10-8) loci associated with SI-NET risk, of which 4 (near SEMA6A, LGR5, CDKAL1, and FERMT2) are novel and 2 (near LTA4H-ELK and in KIF16B) have been reported previously. Interestingly, the top hit (rs200138614; P = 1.80 × 10-19) was a missense variant (p.Cys712Phe) in the LGR5 gene, a bona-fide marker of adult intestinal stem cells and a potentiator of canonical WNT signaling. The association was validated in an independent Finnish collection of 70 patients with SI-NETs, as well as in the UK Biobank exome sequence data (n = 92 cases and n = 392,814 controls). Overexpression of LGR5 p.Cys712Phe in intestinal organoids abolished the ability of R-Spondin1 to support organoid growth, indicating that the mutation perturbed R-Spondin-LGR5 signaling. CONCLUSIONS: Our study is the largest genome-wide association study to date on SI-NETs and reported 4 new associated genome-wide association study loci, including a novel missense mutation (rs200138614, p.Cys712Phe) in LGR5, a canonical marker of adult intestinal stem cells.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Adulto , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Mutação de Sentido Incorreto , Estudo de Associação Genômica Ampla , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Receptores Acoplados a Proteínas G/genética , Cinesinas/genética
6.
Nat Genet ; 55(5): 796-806, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37156999

RESUMO

Inflammatory bowel diseases (IBDs) are chronic disorders of the gastrointestinal tract with the following two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). To date, most IBD genetic associations were derived from individuals of European (EUR) ancestries. Here we report the largest IBD study of individuals of East Asian (EAS) ancestries, including 14,393 cases and 15,456 controls. We found 80 IBD loci in EAS alone and 320 when meta-analyzed with ~370,000 EUR individuals (~30,000 cases), among which 81 are new. EAS-enriched coding variants implicate many new IBD genes, including ADAP1 and GIT2. Although IBD genetic effects are generally consistent across ancestries, genetics underlying CD appears more ancestry dependent than UC, driven by allele frequency (NOD2) and effect (TNFSF15). We extended the IBD polygenic risk score (PRS) by incorporating both ancestries, greatly improving its accuracy and highlighting the importance of diversity for the equitable deployment of PRS.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/genética , Doença de Crohn/genética , População do Leste Asiático , População Europeia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Polimorfismo de Nucleotídeo Único/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
7.
medRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993194

RESUMO

The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation, and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here, we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues, using personalized reference genomes to mitigate technical confounding. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B, and T cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.

8.
medRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778285

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most commonly occurring clonal somatic alteration detected in the leukocytes of women, yet little is known about its genetic determinants or phenotypic consequences. To address this, we estimated mLOX in >900,000 women across eight biobanks, identifying 10% of women with detectable X loss in approximately 2% of their leukocytes. Out of 1,253 diseases examined, women with mLOX had an elevated risk of myeloid and lymphoid leukemias and pneumonia. Genetic analyses identified 49 common variants influencing mLOX, implicating genes with established roles in chromosomal missegregation, cancer predisposition, and autoimmune diseases. Complementary exome-sequence analyses identified rare missense variants in FBXO10 which confer a two-fold increased risk of mLOX. A small fraction of these associations were shared with mosaic Y chromosome loss in men, suggesting different biological processes drive the formation and clonal expansion of sex chromosome missegregation events. Allelic shift analyses identified alleles on the X chromosome which are preferentially retained, demonstrating that variation at many loci across the X chromosome is under cellular selection. A novel polygenic score including 44 independent X chromosome allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Collectively our results support a model where germline variants predispose women to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of subsequent clonal expansion.

9.
Nat Immunol ; 23(7): 1063-1075, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668320

RESUMO

Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP-CREB-DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.


Assuntos
Colite , Receptores Acoplados a Proteínas G , Animais , Colite/metabolismo , Concentração de Íons de Hidrogênio , Inflamação/metabolismo , Lisossomos/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Th17/metabolismo
10.
Inflamm Bowel Dis ; 28(5): 775-782, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34928348

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBDs) are characterized by chronic inflammation and tissue damages in limited segments of the digestive tract. Pathogenesis in the tissue and mucosal inflammation probably differs according to disease location. Our aim was to further analyze transcriptomic profiles in different locations of IBD, differentiating ulcerative colitis (UC), colonic Crohn's disease (CD), ileal CD, and pouchitis, with respect to normal colonic and ileal mucosa. We thus performed a meta-analysis focusing on specific transcriptomic signatures of ileal and colonic diseases. METHODS: We identified 5 cohorts with available transcriptomic data in ileal or colonic samples from active IBD and non-IBD control samples. The meta-analysis was performed on 1047 samples. In each cohort separately, we compared gene expression in CD ileitis and normal ileum; in CD colitis, UC, and normal colon; and finally in pouchitis and normal ileum. RESULTS: We identified specific markers of ileal (FOLH1, CA2) and colonic (REG3A) inflammation and showed that, with disease, some cells from the ileum start to express colonic markers. We confirmed by immunohistochemistry that these markers were specifically present in ileal or colonic diseases. We highlighted that, overall, colonic CD resembles UC and is distinct from ileal CD, which is in turn closer to pouchitis. CONCLUSIONS: We demonstrated that ileal and colonic diseases exhibit specific signatures, independent of their initial clinical classification. This supports molecular, rather than clinical, disease stratification, and may be used to design drugs specifically targeting ileal or colonic diseases.


We perform a meta-analysis of publicly available inflammatory bowel disease transcriptomes and identify FOLH1, REG3A, and CA2 as specific markers of ileal and colonic diseases. We demonstrate that Crohn's colitis resembles ulcerative colitis, while Crohn's ileitis resembles pouchitis.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Pouchite , Biomarcadores/metabolismo , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Humanos , Íleo/patologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Pouchite/patologia , Transcriptoma
11.
Genome Med ; 13(1): 181, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758847

RESUMO

BACKGROUND: Genetic studies have been tremendously successful in identifying genomic regions associated with a wide variety of phenotypes, although the success of these studies in identifying causal genes, their variants, and their functional impacts has been more limited. METHODS: We identified 145 genes from IBD-associated genomic loci having endogenous expression within the intestinal epithelial cell compartment. We evaluated the impact of lentiviral transfer of the open reading frame (ORF) of these IBD genes into the HT-29 intestinal epithelial cell line via transcriptomic analyses. By comparing the genes in which expression was modulated by each ORF, as well as the functions enriched within these gene lists, we identified ORFs with shared impacts and their putative disease-relevant biological functions. RESULTS: Analysis of the transcriptomic data for cell lines expressing the ORFs for known causal genes such as HNF4a, IFIH1, and SMAD3 identified functions consistent with what is already known for these genes. These analyses also identified two major clusters of genes: Cluster 1 contained the known IBD causal genes IFIH1, SBNO2, NFKB1, and NOD2, as well as genes from other IBD loci (ZFP36L1, IRF1, GIGYF1, OTUD3, AIRE and PITX1), whereas Cluster 2 contained the known causal gene KSR1 and implicated DUSP16 from another IBD locus. Our analyses highlight how multiple IBD gene candidates can impact on epithelial structure and function, including the protection of the mucosa from intestinal microbiota, and demonstrate that DUSP16 acts a regulator of MAPK activity and contributes to mucosal defense, in part via its regulation of the polymeric immunoglobulin receptor, involved in the protection of the intestinal mucosa from enteric microbiota. CONCLUSIONS: This functional screen, based on expressing IBD genes within an appropriate cellular context, in this instance intestinal epithelial cells, resulted in changes to the cell's transcriptome that are relevant to their endogenous biological function(s). This not only helped in identifying likely causal genes within genetic loci but also provided insight into their biological functions. Furthermore, this work has highlighted the central role of intestinal epithelial cells in IBD pathophysiology, providing a scientific rationale for a drug development strategy that targets epithelial functions in addition to the current therapies targeting immune functions.


Assuntos
Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Fator 1 de Resposta a Butirato/genética , Proteínas de Transporte/genética , Fosfatases de Especificidade Dupla/genética , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Células HEK293 , Humanos , Imunoglobulinas , Fator Regulador 1 de Interferon/genética , Mucosa Intestinal/metabolismo , Intestinos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fatores de Transcrição Box Pareados/genética , Proteínas Quinases/genética , Fatores de Transcrição/genética , Transcriptoma , Proteases Específicas de Ubiquitina/genética , Proteína AIRE
12.
Nat Med ; 27(6): 1012-1024, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099924

RESUMO

Age is the dominant risk factor for infectious diseases, but the mechanisms linking age to infectious disease risk are incompletely understood. Age-related mosaic chromosomal alterations (mCAs) detected from genotyping of blood-derived DNA, are structural somatic variants indicative of clonal hematopoiesis, and are associated with aberrant leukocyte cell counts, hematological malignancy, and mortality. Here, we show that mCAs predispose to diverse types of infections. We analyzed mCAs from 768,762 individuals without hematological cancer at the time of DNA acquisition across five biobanks. Expanded autosomal mCAs were associated with diverse incident infections (hazard ratio (HR) 1.25; 95% confidence interval (CI) = 1.15-1.36; P = 1.8 × 10-7), including sepsis (HR 2.68; 95% CI = 2.25-3.19; P = 3.1 × 10-28), pneumonia (HR 1.76; 95% CI = 1.53-2.03; P = 2.3 × 10-15), digestive system infections (HR 1.51; 95% CI = 1.32-1.73; P = 2.2 × 10-9) and genitourinary infections (HR 1.25; 95% CI = 1.11-1.41; P = 3.7 × 10-4). A genome-wide association study of expanded mCAs identified 63 loci, which were enriched at transcriptional regulatory sites for immune cells. These results suggest that mCAs are a marker of impaired immunity and confer increased predisposition to infections.


Assuntos
Envelhecimento/genética , Doenças Transmissíveis/genética , Pneumonia/genética , Sepse/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Bancos de Espécimes Biológicos , Aberrações Cromossômicas , Doenças Transmissíveis/complicações , Doenças Transmissíveis/microbiologia , Doenças do Sistema Digestório/epidemiologia , Doenças do Sistema Digestório/genética , Doenças do Sistema Digestório/microbiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mosaicismo , Pneumonia/epidemiologia , Pneumonia/microbiologia , Fatores de Risco , Sepse/epidemiologia , Sepse/microbiologia , Anormalidades Urogenitais/epidemiologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/microbiologia , Adulto Jovem
13.
PLoS Genet ; 17(4): e1009501, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33909604

RESUMO

Protein-truncating variants (PTVs) affecting dyslipidemia risk may point to therapeutic targets for cardiometabolic disease. Our objective was to identify PTVs that were associated with both lipid levels and the risk of coronary artery disease (CAD) or type 2 diabetes (T2D) and assess their possible associations with risks of other diseases. To achieve this aim, we leveraged the enrichment of PTVs in the Finnish population and tested the association of low-frequency PTVs in 1,209 genes with serum lipid levels in the Finrisk Study (n = 23,435). We then tested which of the lipid-associated PTVs were also associated with the risks of T2D or CAD, as well as 2,683 disease endpoints curated in the FinnGen Study (n = 218,792). Two PTVs were associated with both lipid levels and the risk of CAD or T2D: triglyceride-lowering variants in ANGPTL8 (-24.0[-30.4 to -16.9] mg/dL per rs760351239-T allele, P = 3.4 × 10-9) and ANGPTL4 (-14.4[-18.6 to -9.8] mg/dL per rs746226153-G allele, P = 4.3 × 10-9). The risk of T2D was lower in carriers of the ANGPTL4 PTV (OR = 0.70[0.60-0.81], P = 2.2 × 10-6) than noncarriers. The odds of CAD were 47% lower in carriers of a PTV in ANGPTL8 (OR = 0.53[0.37-0.76], P = 4.5 × 10-4) than noncarriers. Finally, the phenome-wide scan of the ANGPTL8 PTV showed that the ANGPTL8 PTV carriers were less likely to use statin therapy (68,782 cases, OR = 0.52[0.40-0.68], P = 1.7 × 10-6) compared to noncarriers. Our findings provide genetic evidence of potential long-term efficacy and safety of therapeutic targeting of dyslipidemias.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Doença da Artéria Coronariana/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dislipidemias/tratamento farmacológico , Hormônios Peptídicos/genética , Idoso , Proteína 8 Semelhante a Angiopoietina , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Dislipidemias/sangue , Dislipidemias/genética , Dislipidemias/patologia , Feminino , Predisposição Genética para Doença , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Triglicerídeos/sangue
14.
Nature ; 593(7858): 238-243, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828297

RESUMO

Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease1. Many of the underlying causal variants may affect enhancers2,3, but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types4. Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.


Assuntos
Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença , Variação Genética/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Linhagem Celular , Cromossomos Humanos Par 10/genética , Ciclofilinas/genética , Células Dendríticas , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Mitocôndrias/metabolismo , Especificidade de Órgãos/genética , Fenótipo
15.
Nat Genet ; 53(2): 185-194, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462484

RESUMO

Clinical laboratory tests are a critical component of the continuum of care. We evaluate the genetic basis of 35 blood and urine laboratory measurements in the UK Biobank (n = 363,228 individuals). We identify 1,857 loci associated with at least one trait, containing 3,374 fine-mapped associations and additional sets of large-effect (>0.1 s.d.) protein-altering, human leukocyte antigen (HLA) and copy number variant (CNV) associations. Through Mendelian randomization (MR) analysis, we discover 51 causal relationships, including previously known agonistic effects of urate on gout and cystatin C on stroke. Finally, we develop polygenic risk scores (PRSs) for each biomarker and build 'multi-PRS' models for diseases using 35 PRSs simultaneously, which improved chronic kidney disease, type 2 diabetes, gout and alcoholic cirrhosis genetic risk stratification in an independent dataset (FinnGen; n = 135,500) relative to single-disease PRSs. Together, our results delineate the genetic basis of biomarkers and their causal influences on diseases and improve genetic risk stratification for common diseases.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Antígenos HLA/genética , Proteínas/genética , Bancos de Espécimes Biológicos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Variações do Número de Cópias de DNA , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Pleiotropia Genética , Humanos , Desequilíbrio de Ligação , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Insuficiência Renal Crônica , Serina Endopeptidases/genética , Reino Unido
16.
Gastroenterology ; 160(5): 1546-1557, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33359885

RESUMO

BACKGROUND AND AIMS: Polygenic risk scores (PRS) may soon be used to predict inflammatory bowel disease (IBD) risk in prevention efforts. We leveraged exome-sequence and single nucleotide polymorphism (SNP) array data from 29,358 individuals in the multiethnic, randomly ascertained health system-based BioMe biobank to define effects of common and rare IBD variants on disease prediction and pathophysiology. METHODS: PRS were calculated from European, African American, and Ashkenazi Jewish (AJ) reference case-control studies, and a meta-GWAS run using all three association datasets. PRS were then combined using regression to assess which combination of scores best predicted IBD status in European, AJ, Hispanic, and African American cohorts in BioMe. Additionally, rare variants were assessed in genes associated with very early-onset IBD (VEO-IBD), by estimating genetic penetrance in each BioMe population. RESULTS: Combining risk scores based on association data from distinct ancestral populations improved IBD prediction for every population in BioMe and significantly improved prediction among European ancestry UK Biobank individuals. Lower predictive power for non-Europeans was observed, reflecting in part substantially lower African IBD case-control reference sizes. We replicated associations for two VEO-IBD genes, ADAM17 and LRBA, with high dominant model penetrance in BioMe. Autosomal recessive LRBA risk alleles are associated with severe, early-onset autoimmunity; we show that heterozygous carriage of an African-predominant LRBA protein-altering allele is associated with significantly decreased LRBA and CTLA-4 expression with T-cell activation. CONCLUSIONS: Greater genetic diversity in African populations improves prediction across populations, and generalizes some VEO-IBD genes. Increasing African American IBD case-collections should be prioritized to reduce health disparities and enhance pathophysiological insight.


Assuntos
Negro ou Afro-Americano/genética , Colite Ulcerativa/genética , Doença de Crohn/genética , Hispânico ou Latino/genética , Judeus/genética , Herança Multifatorial , Penetrância , Polimorfismo de Nucleotídeo Único , População Branca/genética , Idade de Início , Estudos de Casos e Controles , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/etnologia , Doença de Crohn/diagnóstico , Doença de Crohn/etnologia , Europa (Continente)/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Prevalência , Fatores Raciais , Medição de Risco , Fatores de Risco , Estados Unidos/epidemiologia
17.
medRxiv ; 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33236019

RESUMO

Age is the dominant risk factor for infectious diseases, but the mechanisms linking the two are incompletely understood1,2. Age-related mosaic chromosomal alterations (mCAs) detected from blood-derived DNA genotyping, are structural somatic variants associated with aberrant leukocyte cell counts, hematological malignancy, and mortality3-11. Whether mCAs represent independent risk factors for infection is unknown. Here we use genome-wide genotyping of blood DNA to show that mCAs predispose to diverse infectious diseases. We analyzed mCAs from 767,891 individuals without hematological cancer at DNA acquisition across four countries. Expanded mCA (cell fraction >10%) prevalence approached 4% by 60 years of age and was associated with diverse incident infections, including sepsis, pneumonia, and coronavirus disease 2019 (COVID-19) hospitalization. A genome-wide association study of expanded mCAs identified 63 significant loci. Germline genetic alleles associated with expanded mCAs were enriched at transcriptional regulatory sites for immune cells. Our results link mCAs with impaired immunity and predisposition to infections. Furthermore, these findings may also have important implications for the ongoing COVID-19 pandemic, particularly in prioritizing individual preventive strategies and evaluating immunization responses.

18.
Proc Natl Acad Sci U S A ; 117(46): 28930-28938, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139556

RESUMO

Common genetic variants interact with environmental factors to impact risk of heritable diseases. A notable example of this is a single-nucleotide variant in the Solute Carrier Family 39 Member 8 (SLC39A8) gene encoding the missense variant A391T, which is associated with a variety of traits ranging from Parkinson's disease and neuropsychiatric disease to cardiovascular and metabolic diseases and Crohn's disease. The remarkable extent of pleiotropy exhibited by SLC39A8 A391T raises key questions regarding how a single coding variant can contribute to this diversity of clinical outcomes and what is the mechanistic basis for this pleiotropy. Here, we generate a murine model for the Slc39a8 A391T allele and demonstrate that these mice exhibit Mn deficiency in the colon associated with impaired intestinal barrier function and epithelial glycocalyx disruption. Consequently, Slc39a8 A391T mice exhibit increased sensitivity to epithelial injury and pathological inflammation in the colon. Taken together, our results link a genetic variant with a dietary trace element to shed light on a tissue-specific mechanism of disease risk based on impaired intestinal barrier integrity.


Assuntos
Proteínas de Transporte de Cátions/genética , Doença de Crohn/genética , Manganês/metabolismo , Alelos , Animais , Proteínas de Transporte de Cátions/metabolismo , Técnicas de Introdução de Genes/métodos , Homeostase/genética , Humanos , Inflamação/genética , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Manganês/fisiologia , Camundongos , Mutação de Sentido Incorreto/genética , Fenótipo , Fatores de Risco
19.
Proc Natl Acad Sci U S A ; 117(45): 28201-28211, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106425

RESUMO

Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations' positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants' pathogenicity in terms of the perturbed molecular mechanisms.


Assuntos
Mutação de Sentido Incorreto/genética , Proteínas/química , Proteínas/genética , Sequência de Aminoácidos , Proteína BRCA1/química , Proteína BRCA1/genética , Biologia Computacional/métodos , Humanos , Aprendizado de Máquina , Modelos Moleculares , Mutação de Sentido Incorreto/fisiologia , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Conformação Proteica , Proteínas/fisiologia
20.
Nature ; 586(7831): 769-775, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057200

RESUMO

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers1. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10-8), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.


Assuntos
Predisposição Genética para Doença/genética , Células-Tronco Hematopoéticas/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Neoplasias/genética , Neoplasias/patologia , Linhagem da Célula/genética , Autorrenovação Celular , Quinase do Ponto de Checagem 2/genética , Feminino , Humanos , Leucócitos/patologia , Masculino , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Risco , Homeostase do Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA